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Random Variable

I Definition: A random variable is a function from a sample
space S into the real numbers. We usually denote random
variables with uppercase letters, e.g. X, Y ...

X : S → R.

I Example:
1. Experiment: toss a coin 2 times

Random variable: X = number of heads in 2 tosses
2. Experiment: toss 10 dice

Random variable: X = sum of the numbers
3. Experiment: apply different amounts of fertilizer to corn plants

Random variable: X = yield/acre

I Remark: probability is also a function mapping events in the
sample space to real numbers. One reason to define random
variable is that it is easier to calculate probabilities with
random variable instead of events.
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Sample Space of Random Variable

I In defining a random variable, we have also defined a new
sample space. For example, in the experiment of tossing a
coin 2 times, the original sample space is

S = {HH,HT ,TH,TT}

I We define a random variable X = number of heads in 2
tosses. The new sample space is

χ = {0, 1, 2}

I The new sample space χ is called the range of the random
variable X .
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Type of Random Variables

I A discrete random variable can take one of a countable
list of distinct values. It’s sample space has finite or
countable outcomes.

I A continuous random variable can take any value in an
interval of the real number line. It’s sample space has
uncountable outcomes.

I Classify the following random variables as discrete or
continuous

I Time until a projectile returns to earth.
I The number of times a transistor in computer memory

changes state in one operation.
I The volume of gasoline that is lost to evaporation during

the filling of a gas tank.
I The outside diameter of a machined shaft.
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Example of Discrete Random Variable

I Consider toss a fair coin 10 times. The sample space S
contains total 210 = 1024 elements, which is of the form

S = {TTTTTTTTTT , . . . ,HHHHHHHHHH}

I Define the random variable Y as the number of tails out
of 10 trials. Remeber that a random variable is a map
from sample space to real number. For instance,

Y (TTTTTTTTTT ) = 10.

I The range (all possible values) of Y is {0, 1, 2, 3, . . . , 10},
which is much smaller than S .
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Example: Mechanical Components

I An assembly consists of three mechanical components.
Suppose that the probabilities that the first, second, and
third components meet specifications are 0.90, 0.95 and
0.99 respectively. Assume the components are
independent.

I Define event
Si = the i th component is within specification, where
i = 1, 2, 3.

I One can calculate
P(S1S2S3) = (0.9)(0.95)(0.99) = 0.84645,
P(S1S2S3) = (0.9)(0.05)(0.01) = 0.00045, etc.
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Example: Mechanical Components

Possible Outcomes for One assembly is

S1S2S3 S1S2S3 S1S2S3 S1S2S3 S1S2S3 S1S2S3 S1S2S3 S1S2S3
0.84645 0.00045 0.00095 0.00495 0.00855 0.04455 0.09405 0.00005

Let Y = Number of components within specification in a
randomly chosen assembly. Can you fill in the following table?

Y 0 1 2 3

P(Y = y)

Note: We usually denote the realized value of the variable by
corresponding lowercase letters.
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Probability Mass Functions of Discrete Variables

I Definition: Let X be a discrete random variable defined
on some sample space S . The probability mass function
(PMF) associated with X is defined to be

pX (x) = P(X = x).

I A pmf p(x) for a discrete random variable X satisfies the
following:

1. 0 ≤ p(x) ≤ 1, for all possible values of x .
2. The sum of the probabilities, taken over all possible values

of X , must equal 1; i.e.,∑
all x

pX (x) = 1.
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Cumulative Distribution Function

I Definition: Let Y be a random variable, the cumulative
distribution function (CDF) of Y is defined as

FY (y) = P(Y ≤ y).

I FY (y) = P(Y ≤ y) is read, “the probability that the
random variable Y is less than or equal to the value y .”

I Property of cumulative distribution function

1. FY (y) is a nondecreasing function.
2. 0 ≤ FY (y) ≤ 1, since FY (y) = P(Y ≤ y) is a probability.
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Example: Mechanical Components Revisited

I In the Mechanical Components example Y = Number of
components within specification in a randomly chosen
assembly. We have the following pmf:

Y 0 1 2 3

P(Y = y) 0.00005 0.00635 0.14715 0.84645

I And the CDF is?
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Example: PMF plot of Mechanical Components
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Example: CDF plot of Mechanical Components
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Simulation R Code

## PMF plot code

y <- c(0,1,2,3)

pmf <- c(0.00005, 0.00635, 0.14715, 0.84645)

plot(y, pmf, type="h", xlab="y", ylab="PMF")

abline(h=0)

## CDF plot code

cdf <- c(0, cumsum(pmf))

cdf.plot <- stepfun(y, cdf, f=0)

plot.stepfun(cdf.plot, xlab="y", ylab="CDF",

verticals=FALSE, main="", pch=16)

13 / 63



Expected Value of a Random Variable

I Definition: Let Y be a discrete random variable with pmf
pY (y), the expected value or expectation of Y is
defined as

µ = E (Y ) =
∑
all y

ypY (y).

The expected value for a discrete random variable Y is
simply a weighted average of the possible values of Y .
Each value y is weighted by its probability pY (y).

I In statistical applications, µ = E (Y ) is commonly called
the population mean.
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Expected Value: Mechanical Components

I The pmf of Y in the mechanical components example is

Y 0 1 2 3

P(Y = y) 0.00005 0.00635 0.14715 0.84645

I The expected value of Y is

µ = E (Y ) =
∑
all y

ypY (y)

= 0(.00005) + 1(.00635) + 2(.14715) + 3(.84645)

= 2.84

I Interpretation: On average, we would expect 2.84
components within specification in a randomly chosen
assembly.
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Expected Value as the Long-run Average

I The expected value can be interpreted as the long-run
average.

I For the mechanical components example, if we randomly
choose an assembly, and record the number of
components within specification. Over the long run, the
average of these Y observation would be close
(converge) to 2.84.
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Expected Value of Functions of Y

I Definition: Let Y be a discrete random variable with pmf
pY (y). Let g be a real-valued function defined on the
range of Y . The expected value or expectation of
g(Y ) is defined as

E [g(Y )] =
∑
all y

g(y)PY (y).

I Interpretation: The expectation E [g(Y )] could be viewed
as the weighted average of the function g when evaluated
at the random variable Y .
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Properties of Expectation

Let Y be a discrete random variable with pmf pY (y). Suppose
that g1, g2, . . . , gk are real-valued function, and let c be a real
constant. The expectation of Y satisfies the following
properties:

1. E [c] = c .

2. E [cY ] = cE [Y ].

3. Linearity: E
[∑k

j=1 gj(Y )
]

=
∑k

j=1 E [gj(Y )].

Remark 1: The 2nd and 3rd rule together imply that

E

 k∑
j=1

cjgj(Y )

 =
k∑

j=1

cjE [gj(Y )],

for constant cj .
Remark 2: Suppose X and Y are independent, then
E (XY ) = E (X )E (Y ).
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Example: Mechanical Components

Question: In the Mechanical Components example, Y =
Number of components within specification in a randomly
chosen assembly. We found E (Y ) = 2.84. Suppose that the
cost (in dollars) to repair the assembly is given by the cost
function g(Y ) = (3−Y )2. What is the expected cost to repair
an assembly?

E [(3− Y )2] =
∑
all y

(3− y)2pY (y)

= (0− 3)2(.00005) + (1− 3)2(.00635)

+ (2− 3)2(.14715) + (3− 3)2(.84645)

= 9(.00005) + 4(.00635) + 1(.14715) + 0(.84645)

= 0.173(dollars)

Interpretation: One average, the repair cost on each assembly
is $0.173.
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Example: Project Management

A project manager for an engineering firm submitted bids on
three projects. The following table summarizes the firms
chances of having the three projects accepted.

Project A B C

Prob of accept 0.30 0.80 0.10

Question: Assuming the projects are independent of one
another, what is the probability that the firm will have all three
projects accepted?
Solution:
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Example: Project Management Cont’d

Question: What is the probability of having at least one
project accepted?

Project A B C

Prob of accept 0.30 0.80 0.10

Solution:
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Example: Project Management Cont’d

Question: Let Y = number of projects accepted. Fill in the
following table and calculate the expected number of projects
accepted.

Y 0 1 2 3

pY (y) 0.126

Solution:
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Example: Project Management Cont’d

Question: Suppose the average labor costs for the projects
decreases with more projects. The relationship between the
number of projects and the average labor costs is:
average cost = 1

Y 2 (million dollars). What is the expected
average labor cost?

Y 0 1 2 3

pY (y) 0.126 0.572 0.278 0.024

Solution:
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Variance of a Random Variable

I Definition: Let Y be a discrete random variable with pmf
pY (y) and expected value E (Y ) = µ. The variance of
Y is given by

σ2 ≡ Var (Y ) ≡ E
[
(Y − µ)2

]
=

∑
all y

(y − µ)2pY (y).

Warning: Variance is always non-negative!

I Definition: The standard deviation of Y is the positive
square root of the variance:

σ =
√
σ2 =

√
Var (Y ).
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Remarks on Variance (σ2)

Suppose Y is a random variable with mean µ and variance σ2.

I The variance is the average squared distance from the
mean µ.

I The variance of a random variable Y is a measure of
dispersion or scatter in the possible values for Y .

I The larger (smaller) σ2 is, the more (less) spread in the
popssible values of Y about the population mean E (Y ).

I Computing Formula:
Var (Y ) = E [(Y − µ)2] = E [Y 2]− [E (Y )]2.
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Properties on Variance (σ2)

Suppose X and Y are random variable with finite variance. Let
c be a constant.

I Var (c) = 0.

I Var [cY ] = c2Var [Y ].

I Suppose X and Y are independent, then

Var [X + Y ] = Var [X ] + Var [Y ].

Question: Var [X − Y ] = Var [X ]−Var [Y ].

I TRUE

I FALSE.
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Bernoulli Trials

Definition: Many experiments can be envisioned as consisting
of a sequence of “trials,” these trails are called Bernoulli trails
if

1. each trial results in a “success” or “failure”;

2. the trials are independent;

3. the probability of a “success” in each trial, denoted as p,
0 < p < 1, is the same on every trial.
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Examples: Bernoulli Trials

1. When circuit boards used in the manufacture of Blue Ray
players are tested, the long-run percentage of defective boards
is 5 percent.

I trial = test circuit board
I success = defective board is observed
I p = P(“success”) = P(“defective board”) = 0.05

2. Ninety-eight percent of all air traffic radar signals are correctly
interpreted the first time they are transmitted.

I trial = radar signal
I success = signal is correctly interpreted
I p = P(“success”) = P(“correct interpretation”) = 0.98
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Expectation and Variance of Bernoulli Trials

I Usually, a success is recorded as “1” and a failure as “0”.

I Define X to be a Bernoulli random variable.

I The probability to success is equal to the probability to get 1.

I Let p = P(X = 1) and q = 1− p = P(X = 0).

I We have
E (X ) = p

and
Var(X ) = p(1− p) = pq
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Binomial Distribution

I Suppose that n Bernoulli trials are performed. Define

Y = the number of successes (out of n trials performed).

I The random variable Y has a binomial distribution with
number of trials n and success probability p.

I Shorthand notation is Y ∼ b(n, p).

I Let us derive the pmf of Y through an example.
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Example: Water Filters

I A manufacturer of water filters for refrigerators monitors
the process for defective filters. Historically, this process
averages 5% defective filters. Five filters are randomly
selected.

I Find the probability that no filters are defective.
solution:

I Find the probability that exactly 1 filter is defective.
solution:

I Find the probability that exactly 2 filter is defective.
solution:

I Can you see the pattern?
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Probability Mass Function of Binomial Random Variable

I Suppose Y ∼ b(n, p).

I The pmf of Y is given by

p(y) =

{(n
y

)
py (1− p)n−y for y = 0, 1, 2, . . . , n,

0 otherwise.

I Recall that
(n
r

)
is the number of ways to choose r distinct

unordered objects from n distinct objects:(
n

r

)
=

n!

r !(n − r)!
.
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Expectation and Variance of Binomial Random Variable

I If Y ∼ b(n, p), then

E (Y ) = np

Var (Y ) = np(1− p).

I Proof:
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Example: Radon Levels

Question: Historically, 10% of homes in Florida have radon
levels higher than that recommended by the EPA. In a random
sample of 20 homes, find the probability that exactly 3 have
radon levels higher than the EPA recommendation. Assume
homes are independent of one another.

Solution: Checking each house is a Bernoulli trial, which
satisfies
X Two outcomes: higher than EPA recommendation or

satisfies EPA recommendation.

X Homes are independent of one another.

X The case that the radon level is higher than the
recommendation is considered as a “success”. The
success probability remains 10%.
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Example: Radon Levels Cont’d

So, the binomial distribution is applicable in this example.
Define

Y = number of home having radon level higher than EPA.

We have Y ∼ b(20, 0.1).

P(Y = 3) =

(
20

3

)
0.130.920−3 = 0.1901.

Doing calculation by R is much easier:

> dbinom(3,20,0.1)

[1] 0.1901199
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Example: Radon Levels Cont’d

Q: What is the probability that no more than 5 homes out of
the sample having higher radon level than recommended?
A: We want to calculate P(Y ≤ 5), which is

P(Y ≤ 5) = P(Y = 0) + P(Y = 1) + ...+ P(Y = 5) = 0.9887

It takes time to do the calculation by hand! It is much easier
to use R:

> pbinom(5,20,0.1)

[1] 0.9887469
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Example: Radon Levels Cont’d

More questions:

I What is the probability that at least 5 homes out of the
sample having higher randon level than recommended?
Solution:

I what is the probability that 2 to 8 homes out of the sample
having higher random level than recommended?
Solution:

I what is the probability that greater than 2 and less than 8
homes out of the sample having higher random level than
recommended?
Solution:
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Geometric Distribution

I The geometric distribution also arises in experiments involving
Bernoulli trials:

1. each trial results in a “success” or “failure”;
2. the trials are independent;
3. the probability of a “success” in each trial, denoted as p,

0 < p < 1, is the same on every trial.

I Definition: Suppose that Bernoulli trials are continually
observed. Define

Y = the number of trials to observe the first success.

I We say that Y has a geometric distribution with success
probability p. Notation: Y ∼ geom(p).
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PMF of Geometric Distribution

If Y ∼ geom(p), then the probability mass function (pmf) of Y is
given by

pY (y) =

{
(1− p)y−1p y = 1, 2, 3, . . .

0 otherwise.
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Example: Geometric Distribution

The probability that a wafer contains a large particle of
contamination is 0.01. If it is assumed that the wafers are
independent, what is the probability that exactly 125 wafers
need to be analysed until a large particle is detected?

Solution: Let Y denote the number of samples analysed until a
large particle is detected. Then Y is a geometric random
variable with p = 0.01. The requested probability is

P(Y = 125) = (0.01)(0.99)125−1 = 0.0029
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Mean and Variance of Geometric Distribution

Suppose Y ∼ geom(p), the expected value of Y is

E (Y ) =
1

p
.

Proof.
Let q = 1− p, E (Y ) =

∑∞
y=1 yq

y−1p = p
∑∞

y=1 yq
y−1. The

right-hand side is the derivative of p
∑∞

y=1 q
y w.r.t. q. By

geometric series,

p
∞∑
y=1

qy =
pq

1− q
.

It follows that E (Y ) = ∂
∂q

[
pq
1−q

]
= 1

p
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Mean and Variance of Geometric Distribution

The variance can be derived in a similar way, which is given by

Var (Y ) =
1− p

p2
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Example Revisit

The probability that a wafer contains a large particle of
contamination is 0.01. If it is assumed that the wafers are
independent, then on average, how many wafers need to be
analysed until a large particle is detected?

Solution:
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Example: Fruit Fly

Biology students are checking the eye color of fruit flies. For each
fly, the probability of observing white eyes is p = 0.25. We
interpret

I trail = fruit fly

I success = fly has white eyes

I p = P(white eyets) = 0.25

If the Bernoulli trial assumptions hold (independent and idential),
then

Y =the number of flies needed to find the first white-eyed

∼ geom(p = 0.25)
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Eample: Fruit Fly

1. What is the probability the first white-eyed fly is observed on
the fifth fly checked?

P(Y = 5) = (0.25)(1− 0.25)5−1 = (0.25)(1− 0.25)4 = 0.079

2. What is the probability the first white-eyed fly is observed
before the fourth fly is examined?

P(Y ≤ 3) = P(Y = 1) + P(Y = 2) + P(Y = 3)

= (0.25)(1− 0.25)1−1 + (0.25)(1− 0.25)2−1 + (0.25)(1− 0.25)3−1

= 0.25 + 0.1875 + 0.140625

= 0.578
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Geometric Distribution PMF CDF R Code

We can use R to calculate the pmf and cdf of geometric
distribution directly by using

pY (y) = P(Y = y) = dgeom(y-1, p)

and
FY (y) = P(Y ≤ y) = pgeom(y-1, p)
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Negative Binomial Distribution

I The negative binomial distribution also arises in experiments
involving Bernoulli trials:

1. each trial results in a “success” or “failure”;
2. the trials are independent;
3. the probability of a “success” in each trial, denoted as p,

0 < p < 1, is the same on every trial.

I Definition: Suppose that Bernoulli trials are continually
observed. Define

Y = the number of trials to observe the rth success.

I We say that Y has a negative binomial distribution with
waiting parameter r and success probability p. Notation:
Y ∼ nib(r , p).
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Negative Binomial Distribution

I The negative binomial distribution is a generalization of the
geometric distribution. If r = 1, then nib(1, p) = geom(p)

I If Y ∼ nib(r , p), then the probability mass function of Y is
given by

pY (y) =

{(y−1
r−1
)
pr (1− p)y−r y = 1, 2, 3, . . .

0 otherwise.

I Mean and Variance:

E (Y ) =
r

p

var(Y ) =
r(1− p)

p2
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Example: Fruit Fly Revisit

Biology students are checking the eye color of fruit flies. For each
fly, the probability of observing white eyes is p = 0.25. What is the
probability the third white-eyed fly is observed on the tenth fly
checked?
Solution: Y ∼ nib(r = 3, p = 0.25). Therefore,

P(Y = 10) =

(
10− 1

3− 1

)
0.253(1− 0.25)10−3 = 0.075
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Negative Binomial Distribution PMF CDF R Code

We can use R to calculate the pmf and cdf of negative binomial
distribution directly by using

pY (y) = P(Y = y) = dnbinom(y-r, r, p)

and
FY (y) = P(Y ≤ y) = pnbinom(y-r, r, p)
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Hypergeometric Distribution

Setting: A set of N objects contains r objects classified as
successes N − r objects classified as failures. A sample of size
n objects is selected randomly (without replacement) from
the N objects. Define

Y = the number of success (out of the n selected).

We say that Y has a hypergeometric distribution and write
Y ∼ hyper(N, n, r). The pmf of Y is given by

p(y) =


(r
y)(N−r

n−y)
(Nn)

, y ≤ r and n − y ≤ N − r

0, otherwise.
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Mean and Variance of Hypergeometric Distribution

If Y ∼ hyper(N, n, r), then

I E (Y ) = n( r
N )

I Var (Y ) = n( r
N )(N−rN )(N−nN−1 ).
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Example: Hypergeometric Distribution

A batch of parts contains 100 parts from a local supplier of
tubing and 200 parts from a supplier of tubing in the next
state. If four parts are selected randomly and without
replacement, what is the probability they are all from the local
supplier?

Solution: Let us identify the parameters first. In this example,
N = , r = , and n = .
Let Y equal the number of parts in the sample from the local
supplier. Then,

P(Y = 4) =

(100
4

)(200
0

)(300
4

) = 0.0119
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Example: Hypergeometric Distribution

The R code to calculate P(Y = y) is of the form
dhyper(y,r,N-r,n). Using R,

> dhyper(4,100,200,4)

[1] 0.01185408

What is the probability that two or more parts in the sample
are from the local supplier?

P(Y ≥ 2) = 1− P(Y ≤ 1) = 1− 0.5925943,

where P(Y ≤ 1) can be computed via R:

> phyper(1,100,200,4)

[1] 0.5925943
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It’s your turn...

If a shipment of 100 generators contains 5 faulty generators,
what is the probability that we can select 10 generators from
the shipment and not get a faulty one?

(a)
(51)(959 )
(10010 )

(b)
(50)(959 )
(1009 )

(c)
(50)(9510)
(10010 )

(d)
( 5
10)(950 )
(10010 )
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Insulated Wire

I Consider a process that produces insulated copper wire.
Historically the process has averaged 2.6 breaks in the
insulation per 1000 meters of wire. We want to find the
probability that 1000 meters of wire will have 1 or fewer
breaks in insulation?

I Is this a binomial problem?

I Is this a hypergeometric problem?
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Poisson Distribution

Note: The Poisson distribution is commonly used to model
counts, such as

1. the number of customers entering a post office in a given
hour

2. the number of α-particles discharged from a radioactive
substance in one second

3. the number of machine breakdowns per month

4. the number of insurance claims received per day

5. the number of defects on a piece of raw material.
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Poisson Distribution Cont’d

I Poisson distribution can be used to model the number of
events occurring in a continuous time or space.

I Let λ be the average number of occurrences per base
unit and t is the number of base units inspected.

I Let Y = the number of “occurrences” over in a unit
interval of time (or space). Suppose Poisson distribution
is adequate to describe Y . Then, the pmf of Y is given by

pY (y) =

{
(λt)y e−λt

y ! , y = 0, 1, 2, . . .

0, otherwise.

I The shorthand notation is Y ∼ Poisson(λt).
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Mean and Variance of Poisson Distribution

If Y ∼ Poisson(λt),

E (Y ) = λt

Var (Y ) = λt.
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Go Back to Insulated Wire

I “Historically the process has averaged 2.6 breaks in the
insulation per 1000 meters of wire” implies that the
average number of occurrences λ = 2.6, and the base
units is 1000 meters. Let Y= number of breaks 1000
meters of wire will have. So Y ∼ Poisson(2.6).

I We have

P(Y = 0 ∪ Y = 1) =
2.60e−2.6

0!
+

2.61e−2.6

1!

I Using R,

> dpois(0,2.6)+dpois(1,2.6)

[1] 0.2673849

> ppois(1,2.6)

[1] 0.2673849
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Go Back to Insulated Wire Cont’d

I If we were inspecting 2000 meters of wire,
λt = (2.6)(2) = 5.2.

Y ∼ Poisson(5.2).

I If we were inspecting 500 meters of wire,
λt = (2.6)(0.5) = 1.3.

Y ∼ Poisson(1.3)

.
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Conditions for a Poisson Distribution

I Areas of inspection are independent of one another.

I The probability of the event occurring at any particular
point in space or time is negligible.

I The mean remains constant over all areas of inspection.

The pmf of Poisson distribution is derived based on these three
assumption! Check out the derivation by yourself at:
http://www.pp.rhul.ac.uk/~cowan/stat/notes/

PoissonNote.pdf
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Questions

1. Suppose we average 5 radioactive particles passing a
counter in 1 millisecond. What is the probability that
exactly 3 particles will pass in one millisecond?
Solution:

2. Suppose we average 5 radioactive particles passing a
counter in 1 millisecond. What is the probability that
exactly 10 particles will pass in three milliseconds?
Solution:
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